
MATHEMATICS OF COMPUTATION
VOLUME 61, NUMBER 203
JULY 1993, PAGES 445-462

A PRACTICAL ANALYSIS
OF THE ELLIPTIC CURVE FACTORING ALGORITHM

ROBERT D. SILVERMAN AND SAMUEL S. WAGSTAFF, JR.

Dedicated to the memory of D. H. Lehmer

ABSTRACT. Much asymptotic analysis has been devoted to factoring algorithms.
We present a practical analysis of the complexity of the elliptic curve algorithm,
suggesting optimal parameter selection and run-time guidelines. The parameter
selection is aided by a novel use of Bayesian statistical decision techniques as
applied to random algorithms. We discuss how frequently the elliptic curve al-
gorithm succeeds in practice and compare it with the quadratic sieve algorithm.

1. INTRODUCTION

The elliptic curve method (ECM) [8] and quadratic sieve (MPQS) [3] fac-
toring algorithms are the most efficient, general-purpose, factoring algorithms
known today. Furthermore, both ECM and MPQS have properties that make
them ideal for parallel computation. The quadratic sieve is a deterministic al-
gorithm whose run time is purely a function of the size of the number being
factored. Its parallel implementation was discussed in [3]. The elliptic curve
method is a random algorithm which finds small factors first. One implements
it in parallel by performing independent random trials on multiple processors
and quitting upon the first success.

In [9] Pomerance analyzed the asymptotic run time for MPQS, and Lenstra
[7] used his results to analyze a single-step version of ECM. We summarize
Lenstra's main result here. Let g be any positive real number, and let

L(p) = e P log199logp K(p) = e (2+o(1))logploglogp

Then, with probability at least 1 - e -, ECM will find a factor p of a larger in-
teger N in time gK(p)M(N), where M(N) is the time to perform multiplica-
tion mod N and K(p) is the number of group operations per curve. Pomerance
showed that the asymptotic run time for MPQS is L(N)l+0(l). Both of these
asymptotic run times were heuristically derived, and depend on an unproved
extension of a theorem of Pomerance, Canfield, and Erdos [9, 7].

Lenstra noted that one wants, in practice, to add a second step to the algo-
rithm and that doing so can greatly shorten its run time. Montgomery [8] and

Received by the editor October 29, 1990; revised June 8, 1991.
1991 Mathematics Subject Classification. Primary 1 1A51, 1 1Y05; Secondary 68Q25, 14H52.
Key words and phrases. Elliptic curves, Dickman's function, smooth groups, quadratic sieve,

factorization.

(1993 American Mathematical Society
0025-5718/93 $1.00 + $.25 per page

445

446 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

Brent [1] both give methods for implementing a second step of the algorithm.
Brent further analyzed the run time and showed that a second step speeds the
method by a factor of logp, where p is the factor to be found, provided that
one uses fast methods for polynomial evaluation.

ECM works by randomly selecting an elliptic curve E: y2 = Ax3 + Bx +
1, with nonzero discriminant and with coefficients in Z/NZ, and a random
rational point P on the curve. If p is a prime dividing N, then the set of
rational points on the curve over Fp, p 7& 2, 3, forms an Abelian group (known
as the Mordell-Weil group) whose order lies in the interval [p - 2# + 1,
p + 2v/jp + 1] [7]. One selects an integer B1 and lets M be the product of all
primes less than B1 raised to some suitable power. One then computes MP
by successive addition of points on the curve and hopes that MP will equal
the identity of the group, modp, but will not equal the identity of the group
mod N. One then finds p by taking a GCD with N. The algorithm succeeds
if the order of the group on the curve has all of its prime factors less than B1 .

The two-step version of the algorithm allows the order of the group to have
all of its prime factors less than B1, along with an additional, single prime
factor between B1 and some limit B2 > B1 . For this reason, the study of the
function which measures the probability that an integer x has all but one of
its prime factors less than B1 and a single factor between B1 and B2 is of
primary importance to the analysis of the algorithm.

Lenstra gave, in his asymptotic analysis, the estimate B(p) = L(p)1/V'+0(1)

for the optimal selection of B1 for the one-step algorithm. Brent's analysis
suggests that this should be lowered by logp for the two-step version. We
define X (p) and ~'(p) as K(p)/ logp and B(p)/ logp, respectively. Asymp-
totically, the factor of logp in the denominator is subsumed by the o(1) in the
exponents, but these definitions are useful for computational purposes. In this
paper we discuss how the elliptic curve method and quadratic sieve perform for
current real-world sized problems. ECM will find 10- to 15-digit factors quite
quickly, 20- to 25-digit factors with an effort of perhaps ten hours, and 30-
to 35-digit factors with considerable difficulty. Over the last several years the
combined efforts of many researchers have resulted in hundreds of thousands
of trials with ECM, and we have found exactly two 38-digit, one 37-digit, and
one 36-digit factor. In this paper we discuss several related aspects of ECM.
Among them are:

(1) How does one select its parameters?
(2) If ECM fails during one trial, how should its parameters be changed for

the next?
(3) How does its run time vary with the size of factors found?
(4) How long should one use ECM before switching to the quadratic sieve?

In order to answer these questions, we require some background material re-
garding the distribution of the largest and smallest prime factors of an arbitrary
positive integer.

2. LARGEST PRIME FACTOR: DICKMAN'S FUNCTION

Dickman's function, p(a), is the probability that an integer x - oo has
its largest prime factor less than xl/a. It was extensively studied in [4]. We
designate by ,U(a, ,B) the probability that x has its second largest prime factor

THE ELLIPTIC CURVE FACTORING ALGORITHM 447

less than xl/a and its largest prime factor less than xfl/a, a > fi > 1 . Then
the functional equations for p and ,u are [6]

P(a) = l/a p(t)dt and u (a, p(t)adt.

For the elliptic curve algorithm to succeed, the order of the Mordell-Weil group
must be smooth up to B1 , with the exception of a single additional prime factor
between B1 and B2. Designate 5A(B1, B2) as the probability of success with
B1 and B2 as limits, where B2 > Bl. Then

9 (Bl , B2) - u (Ce, ,)with al I lgB
lo

,=I B2. logp _ log B2

One can numerically integrate p(a) by starting with the initial values p(x) = 1
for 0 < x < 1 . One can then set up an array of values for p(a) as a varies
from (say) 3 to 1000, and compute their values by using Simpson's method for
the integration. Tables for p(a) are also given in [6]. One can then use the
tabulated values for p to numerically integrate ,U(a, f,). The functions are
well behaved and monotonic, and Simpson's method gives good accuracy. Our
program agrees with published tables to the accuracy limits of those tables.

3. SMALLEST PRIME FACTOR: MERTENS's THEOREM

We shall need estimates for the probability that a prime factor p, of a larger
integer N, lies in a given interval. The probability that there is at least one
divisor p, with y <p <y1+8 is 1 minus the probability that there is no divisor
in the interval. On the assumption of independence, this is approximately

(3.1) 1- TI (1- 1(-

Formula (3.1) is not exact, owing to edge conditions at the interval boundaries.
By Mertens's Theorem [5, p. 351] we have Hp<,(I - I/p) e-y/logx, so that
(3.1) simplifies to

(3.2) E(N, y, E) = Prob(]p with y < p < ye and pIN) 1

This argument assumes that the probabilities for each prime in the interval are
independent of one another. This assumption will be correct provided that N
is big enough to have every prime p in the interval as a factor. Thus,

N>]7 P,
y<p<y I+e

and this is approximately ey+ /ely by the Prime Number Theorem.
In the case where N is not large enough to guarantee independence of proba-

bilities, we shall need to use a standard inclusion/exclusion argument to correct
for the lack of independence. Assume that y = N3, and let 5t be the set of
primes in the interval (y, yl+i . Then there can be up to d [LI/j factors in
5R. The probability is then

(3.3) _(N, y,)Z) p 2! E* pq 3! 1pq
pES9" p ,qES9" p ,q, rES"'

448 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

The asterisks indicate that the reciprocal of the product under each summand
is constrained to be less than or equal to N. The probability given in (3.3) can
be written more generally as

(3.4) 61Ed(N, y E) = E ()

=,p,<N

where the constraint given on the inner sum guarantees that the product of
primes in the inner product does not exceed N. This constraint will not be
binding for j < log N/((1 + e) logy) because the product of j factors in this
case cannot exceed N. If we truncate the sum at this point, by the Inclu-
sion/Exclusion Inequality, the magnitude of the error is at most

h! E 1 Pi
PiES9" i=1

Hh p,<N

where h is the smallest integer exceeding log N/((1 + e) logy) . For the uncon-
strained cases we have

pE 9" i= IPi P9" Pi)

For the constrained cases we have

E-9 i=1 <P (E, Pi)

W p?<N

since clearly the constrained summand contains fewer cases than the uncon-
strained. A classical estimate also gives Ep<y 1/p = loglogy + Yi + o(l) [5, p.
351], where y2 is a computable constant. By using this estimate, and replacing
the constrained summands by their upper bounds, we can obtain an approxi-
mation for the probability that there is a prime factor in 5t when N is not
sufficiently large to guarantee independence.

We give an example of the calculations here. Suppose N is a 100-digit
integer. The probability that N has a prime factor between 105 and 1010 can
then be computed as follows. We clearly have d = 19, and that the product of
any ten primes in the interval must be less than N. Thus, the first ten terms in
our sum are unconstrained. The last nine are constrained, but their contribution
is small, so replacing them with their upper bound will not incur much error.
We have

1010

E - = loglog 010 - loglog 105 + o(l) 1 log2.
p=105

Our estimate then becomes
1 2 13 log 2- ~log 2 + log 2- +19! log'9 2 1 .500000000.

THE ELLIPTIC CURVE FACTORING ALGORITHM 449

Designate S(N) as the smallest prime p that divides N. To estimate
Prob(S(N) e J), one can now simply compute _(N, y, e) times 1 minus
the probability that there is a factor less than y.

4. OPTIMAL PARAMETER SELECTION

Parameters under our control are the step- I and step-2 limits, and the number
of curves. There are several ways to approach the problem of optimal parameter
selection. One way is to maximize the probability of success divided by the
work performed, allowing the latter to vary. This is perhaps the most natural
approach because it maximizes the probability of success per unit work. Another
is to fix the amount of work and simply maximize the probability of success.
We look at the latter problem first.

Maximizing 9(a, f,). On the assumption that step 2 runs K times as fast
as step 1 (K will be implementation-dependent), the cost of running one curve
is B1 + (B2 - BI)/K. That is to say, if we can compute step 1 to B1 in some
fixed time, we can compute step 2 to KB1 in the same amount of time. If we
use L curves, the total run time is T = L(B1 + (B2 - B1)/K) . If B1 is small
with respect by B2, or K is large (as is usually the case), we can approximate
this to T - L(BI + B2/K). We would then like to maximize the probability of
success with L curves. This probability is

(4.1) 1-[1 -Y(B1, B2,

Maximizing this with T fixed is equivalent to minimizing

[1 -9(B1 , B2)](T/(B?+B2/K))

This in turn is equivalent to minimizing

(4.2) Q(B1,I B2) - (B T o((I,B)
(4 . 2) ~~(B l + B21/K)

The Kuhn-Tucker conditions yield

T(log(1 -9 (B1, B2)) _ -T_ __ _

(4.3) (B1 + B2/K)2 (1 - Y(BI, B2))(BI + B2/K)
T log(l - 7(BI , B2)) _ - B2

K(BI +B2/K)2 - (1 -(BI, B2))(BI +B2/K)

Solving for ,9 and 9,9 gives, at the stationary points,

ay (Y(BI, B2) - 1)log(l - (BI, B2))

(4 4) aB, (B1 + B2/K) (4.4) ay
_

(?)(B , B2)- 1)log(1l -?A(Bi, B2))

OB2 K(BI + B2/K)

Whence

(4.5) -B = K 0B 0B, 0B2.

We remark that without the simplification B2 ` B2 - B1, K would become
K2 (K - 1) in (4.5). That (4.5) represents a minimum is easy to see because

450 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

the function is convex. The result implies that if we have selected B1 and B2
optimally, then if we change B1 by AB1 , then B2 should be changed by KAB1 .
The partial derivatives in (4.4) can be directly determined from y(B1, B2),
yielding

019 _ 9E(BI , B2) + p(ce -,B p(a - 1) logp

(46) 0B1- B1 log(p/B2) B1 logB1 B1 log B1 log(p/B2)
B B logB2(Bp, B2) + P(-)

0B2 B2 log2 (pIB2) B2log(p/B2)

For simplicity of notation we set Y = 1 -A(B1, B2) and W = log(p/B2)
Then, combining (4.6) with the optimality conditions given by (4.4) yields

(-%) log(F) _ Y(B1, B2) p(ae - /) p(a -1) logp
(B1 + B2/K) B2B1 B1 logB1 B1 logB1I

*47 (-Y) log(F/) _log B,Y(BI, B2) +p(a-,8)
K(B1 + B2/K) B2 2 B2+

Solving (4.7) would yield expressions for the best values for B1 and B2, but
(4.7) seems analytically intractable. To determine the optimal B1 and B2, we
are therefore forced to resort to numerical evaluation of 3(B1, B2) .

To determine the optimal relationship between B1 and B2, the following
procedure seems reasonable. Fix the size of the prime factor for which we
are looking. Fix T, and allow B1 and L to vary, adjusting B2 accordingly.
Compute 3(B1, B2) by direct integration of Dickman's function and select
the set of values for L, B1 , and B2 that maximizes the probability of success.
Table 1 shows the results of this computation for p = 1015 and K = 100 . The
highest probability of success occurs where L = 5 and B2 41 B1 . Table 1
was recomputed for values of p ranging from 105 to 1040 and values of K
varying from 10 to 500. Each time, the optimal value of B2 was approximately
0.4KB1, provided that T was big enough to yield a nonnegligible chance of
success. Space prohibits displaying all of the relevant data here. However,
the estimate B2 = 0.4KB1 is a good general rule to use because the objective
function is very flat in the neighborhood of the optimum. It should give results
that are within a few percent of optimum.

The optimal value for B1 could, in theory, be derived from B(p), however
we would need accurate estimates for its o(1) term as a function of p, and we
do not have such an expression.

Table 2 shows what happens if T is not big enough to give a nonnegligible
chance of success. As p increases, W(p) , and hence T, must increase also, and
this cannot occur when T is constrained. This table displays, for T = 20, 000,
the optimal computed values for B1 and B2 as p is varied. The probability
of success is more dependent on B1 than B2, and since T is constrained, we
cannot maintain B2 = 0.4KB1 while B1 is increasing, without reducing L.
Once L reaches 1, however, it cannot be reduced further.

An intuitive explanation for this result is as follows. The success of the
algorithm requires that a random number near p will be smooth up to B1
and have a single prime factor between B1 and B2. The probability that this
number is smooth up to B1 clearly depends on the size of p, but the probability
that it has a single prime factor between B1 and B2 will be independent of p
if p is sufficiently large with respect to B2.

THE ELLIPTIC CURVE FACTORING ALGORITHM 451

TABLE 1. Optimal B2/B1 relationship; p = 1015; T = 20,000; K = 100

Curves B1 B2 7P(B1, B2) B2/B,

1 12539 758620 .0635548 60.5
2 6535 352941 .0768417 54.0
3 4474 223713 .0816556 50.0
4 3546 148936 .0829785 42.0
5 2857 117142 .0829913 41.0
6 2491 100071 .0813971 40.2
7 2063 81485 .0796019 39.5
8 1837 71942 .0776121 39.1
9 1628 61050 .0752463 37.5
10 1498 54945 .0729526 36.7
11 1356 47489 .0706545 35.0
12 1277 43990 .0682703 34.4
13 1189 40183 .0660136 33.8
14 1094 35931 .0637429 32.8
15 1010 32333 .0615120 32.0
16 963 30203 .0593397 31.3
17 904 28054 .0573140 31.0
18 854 26395 .0552602 30.9
19 813 24979 .0533285 30.7
20 777 23646 .0515252 30.4

TABLE 2. Optimal B2/B1 relationship for fixed T (K = 100)

Digits L B1 B2 TP(B1, B2) B2 /B

10 32 429 19974 .915860 46.6
11 22 631 28443 .698543 45.1
12 16 880 37871 .449772 43.0
13 10 1413 60082 .265791 42.5
14 8 1778 74006 .147927 41.6
15 4 3568 146688 .082823 41.1
16 4 3578 145745 .045130 40.7
17 3 4809 190510 .024959 39.6
18 2 7271 280162 .014252 38.5
19 1 14565 558007 .008191 38.3
20 1 14601 554427 .004646 38.0
21 1 14632 551360 .002598 37.7
22 1 14792 535502 .001428 36.2
23 1 15259 489356 .000768 32.1
24 1 15469 468559 .000411 30.3
25 1 15601 455514 .000215 29.2

Remark. We note, as a practical matter, that if one wants to perform ECM
with just one curve, then one should use the P - 1 algorithm instead, since it
is significantly faster.

452 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

Maximizing 39(a, ,B)/T. We now examine the more interesting case of trying
to maximize the probability of success per unit work. Table 3 shows the results.
For each entry in the table a mesh was created by varying B1 and B2. We
then looked for the point that maximized the probability of success divided by
the cost per curve. The probability of success was again computed using direct
integration of Dickman's function ,u(a, fi). This table assumes that step 2 is
100 times as fast as step 1. Montgomery's program, the most efficient ECM
program known to us, is even better. It achieves K = 170 on some machines.
With K = 100 the cost per curve is B1 + (B2 - B1)/ 100. The following columns
are included in the table:

(1) D is the number of decimal digits in the factor for which we are looking.
(2) B1 and B2 are the optimal step-I and step-2 limits.
(3) L is the expected number of curves to find a factor of this size. It is

clearly 11/3(BI, B2).
(4) Inc is the incremental cost ratio, that is, the cost for this row divided

by the cost for finding a factor that is 1 digit smaller.

The minor fluctuations in the B2/B, column (and others) are due to the fact
that the response surface is extremely flat in the neighborhood of the global op-
timum. Furthermore, Dickman's p-function, needed to compute ,u(a, ,B), was
precalculated only at fixed points and not interpolated for the second integra-
tion. Changes of + 10% in B1 can result in less than a 1% change in the global
response surface, even though the probability of success for a single curve can
change significantly. Furthermore, the actual Bl- and B2-parameters are prime
numbers, and the entries in Table 3 are not taken as primes. For example, for
p = 104 , B1 is given as 16 and B2 as 800. These should actually be rounded
to the nearest primes, yielding B1 = 17, and B2 = 797, changing the B2/B,
ratio substantially. Table 3 is very approximate for small p.

TABLE 3. Optimal ECM parameter selection (K = 100)

D B1 B2 P(B1, B2) Average L B2/B1 T Inc

5 16 800 .456 2.19 50 52.6
7 53 2650 .226 4.41 50 350.5 2.48
9 156 7176 .122 8.16 46 1858 2.25
11 405 19440 7.10e-2 14.1 48 8441 2.09
13 962 42328 4.07e-2 24.6 44 34034 1.98
15 2240 103017 2.60e-2 38.4 46 125599 1.90

17 4778 215010 1.61e-2 62.2 45 430918 1.84

19 9004 405180 9.39e-3 106 45 1.389e+6 1.78

21 18437 792791 6.20e-3 161 43 4.250e+6 1.74

23 34155 1.40e+6 3.86e-3 259 41 1.245e+7 1.70

25 66596 2.66e+6 2.66e-3 376 40 3.506e+7 1.66

27 133297 5.33e+6 1.95e-3 512 40 9.546e+7 1.64

29 247988 9.99e+6 1.38e-3 725 40 2.519e+8 1.62

31 374990 1.54e+7 8.20e-4 1219 41 6.447e+8 1.59

33 649996 2.66e+7 5.59e-4 1757 41 1.61 le+9 1.57

35 1170924 4.80e+7 4.19e- 2382 41 3.933e+9 1.56

37 1967442 8.13e+7 2.97e-4 3366 41 9.404e+9 1.54

39 3276490 1.31 e+8 2.05e-'4 4878 40 2.237e+ 10 1.52

41 5249667 2.09e+8 1.44e-4 6897 40 5.068e+10 1.51

THE ELLIPTIC CURVE FACTORING ALGORITHM 453

Remark. It is possible to select the coefficients of an elliptic curve so that the
group order is a priori divisible by 12, or alternatively 8, one-half the time and
16 one-half the time. This selection is assumed in Table 3. Clearly, if one does
not make this selection, then one loses approximately one extra digit and should
select parameters from Table 3 accordingly.

Lenstra's results stated in the introduction imply that the probability of suc-
cess divided by the cost is

1 -e-9

gK(p)M(N)
This is clearly maximized at g = 1 for any fixed N and p, so the optimal
probability of success is 1 - 1l/e. Indeed, from Table 3, the global probability
of success with multiple curves is

I - (I -Y.(BI, B2))(/1/0 (B I B2))

and this clearly approaches 1 - I/e as D -* oo because 3 (B1, B2) -O 0 at the
appropriate rate. Furthermore, if one computes 1 - (1 - 3(B1, B2))L from
Table 3, one obtains very good approximations to 1 - 1 /e.

The o(l) terms in X(p) and ~W(p) represent a class of functions of p
that go to zero as p goes to infinity. From Table 3, we can estimate the o(1)
functions for X (p) and ?W(p). For each value of p we may find the corre-
sponding value for o(1) by setting X(p) and F(p) equal to the values in the
T and B1 columns, respectively, and then solving for o(1). Thus, we obtain
for (p):

o(l) [log(Tlogp)]2 _2
logp log logp

and for q (p) we obtain:

o(_) log(BI logp) 1
/logp loglogp X/

Table 4 (next page) gives these computed values, while Figure 1 plots them.
Since these are o(1) estimates, they must drop to zero as p oo, and the data
suggests that they might.

0.4 -

KJ(p)

0.3 -

0.2 -

0.1 -

0.0 -
10 15 20 25 30 35 40

-0.1- P) Decimal Digits ill p

-0.2 -

FIGURE 1. o(l) estimates for X%(p) and ~F(p)

454 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

TABLE 4. o(1) estimates for X(p) and q(p)

log10 P 3(P) K(p) logio P 5(p) K(p)

4 -.130386 .396991 23 .063736 .311264
5 - .057283 .394847 24 .062588 .308229
6 -.015251 .388040 25 .061436 .306850
7 .011771 .385323 26 .060284 .307257
8 .031230 .379910 27 .059054 .305791
9 .044596 .373503 28 .058359 .303252
10 .053258 .368445 29 .056557 .298345
11 .059085 .362141 30 .055008 .290877
12 .062846 .356763 31 .053742 .287734
13 .065517 .353562 32 .052380 .286437
14 .067397 .350188 33 .051164 .284786
15 .068545 .347020 34 .049909 .285186
16 .068941 .340724 35 .048716 .280016
17 .069027 .330794 36 .047530 .280075
18 .068465 .325531 37 .046313 .278940
19 .067677 .327952 38 .045135 .276070
20 .066807 .320870 39 .043981 .274095
21 .066059 .313776 40 .042839 .272629
22 .064925 .311541

25-

20 -

log T

log

10

10- og L oB

0 - I I I I I I 1

5 10 15 20 25 30 35 40

Decimal Digits in p

FIGURE 2. Logarithms of optimal L, B, and T

Figure 2 plots the logarithms of L, B, , and T from Table 3.
Figure 3 plots the incremental cost ratio to find a factor of one more digit.

It is easy to see that the incremental cost ratio is dropping slowly to 1 as p
increases. Indeed,

lim x(lOp) 1
p -+oo0 (p

THE ELLIPTIC CURVE FACTORING ALGORITHM 455

3.0 -

2.5-

Inc 2.0 -

1.5 -

i.0- I l l l I
5 10 15 20 25 30 35 40

Decimal Digits in p

FIGURE 3. Incremental cost of adding one digit

The function behaves approximately like 0(p'15), hence ECM behaves like

an 0(p1l5) method for p between 5 and 40 digits.

5. CHANGING ECM PARAMETERS AFTER FAILURE

We now discuss the problem of how to select B1 and B2 when we do not
know p. We assume that N is an odd, random composite integer. In practice,
one always starts factoring N by trial division up to some limit yo = log N or
perhaps yo = NE for small c. To find the initial starting point for ECM, we
need to compute the expected size of the smallest factor of N, given that it is
greater than yo, and then use that value. This can be readily computed, using
the methods given in ?3. The probability that the smallest prime factor is in an
interval (y, y1+6) is the probability that there is a factor in that interval times
the probability that there is no factor in any smaller interval. Table 5 (next
page) presents the expected size of the smallest prime factor of N, for various

N, given that trial division to log2 N failed to find a factor. The third column
shows the expected value of the size of S(N), simply given that S(N) > 10.
This table was computed by partitioning the interval [log yo, log N/] into 1000
pieces of equal length (= (log N - log yo)/ 1000 . We also estimate the average
size of a factor p in the interval (1od, IOd+?) to be d + 1 +?(/2. Our estimate
for the size of E(S(N)) now becomes

logv'N d-3

E (S (N)) 1-1 E (d + I + / 2) D(d) n (I - D (j)),
d=log yo j=log log2 N

where the product and sum are taken over increments of (, and D(d) is the
probability that there is a factor in the interval.

Now, supposing that ECM fails, we can use the information obtained from
the failure, along with Bayes's theorem, to re-estimate the expected size of the
still unknown factor. Assuming that we run ECM and it fails, the failure will
give us a sample distribution. A prior can be derived from (3.2). The density
function for the prior is obtained by differentiating the distribution function
Prob(3p with yo < p < IOk and pIN) . This probability is approximately

_(N, 3, k/ log(yo) - 1) - (k - log(yo))/k.

456 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

TABLE 5. Expected size of S(N) (in digits)

log10 N YO=g2 N Yo = 10

20 3.65 2.28

30 5.15 2.67

40 6.36 2.93

50 7.39 3.14
60 8.28 3.30

70 9.07 3.43

80 9.79 3.54

90 10.44 3.64

100 11.04 3.72

125 12.35 3.88

150 13.48 3.99

175 14.46 4.08

200 15.34 4.15

Differentiating this with respect to k yields log(yo)/k2 as our initial prior.
Once we have run ECM and had it fail, we will use the sample distribution
derived from the failure as the prior for the next trial. Alternatively, one can
always use a uniform prior. In the parlance of Bayesian statistics, "the sample
swamps the prior." Whether one uses a uniform prior, or the posterior from
the last failure, makes little difference in practice.

Bayes's theorem states that the posterior density function is the product of the
prior and sample density functions, times an appropriate integration constant.
Thus, if g(p) is the prior, and h(p) is the sample, then T(p) is the posterior,
where

T(p) = kg(p)h(p) and k=
f g(x)h(x)dx'

An example will make this clear. Suppose (from Table 3) we chose B1 =
3350, B2 = 151000 and that we were looking for a 15-digit factor. We shall
also assume that there are no factors less then (say) nine digits based upon trial
division. With the given parameters, the probability of failing to find a factor
of D digits is given in column 2 of Table 6. This gives us a sample distribution
function. To get its density function, we compute its derivative numerically.
Those values are given in the third column of Table 6. We assume a uniform
prior for this calculation, so the expected value of the posterior will just be the
expected value of the sample. The expected value of the posterior is 15.84. We
then use this value to select the new ECM parameters. The actual calculations
were carried out to more precision than is displayed in the table.

The same calculation was repeated for factors of 4 to 40 digits and the results
are displayed in Table 7. This table gives, based upon a uniform prior, the new
estimated size of the factor, given that the current search has failed and that
the current search used the parameters from Table 3.

Remark. We note that the technique just described, for parameter reselection,
can be applied in other instances as well. It is not unique to ECM. One can use
the method in any random algorithm where the probability of success varies in
a predictable way upon the value of the input parameters.

THE ELLIPTIC CURVE FACTORING ALGORITHM 457

TABLE 6. Bayes theorem calculation

D Prob density

9 3.100e-10 1.315e-7
10 2.629e-7 4.039e-5
11 8.078e-5 1.891e-3
12 3.782e-3 1.953e-2
13 3.914e-2 7.789e-1
14 .1595 .1624
15 .3639 .2132
16 .5860 .1969
17 .7578 .1417
18 .8694 8.767e-2
19 .9331 4.906e-2
20 .9675 2.572e-2
21 .9846 1.266e-2
22 .9929 6.070e-3
23 .9968 2.837e-3
24 .9985 1.299e-3
25 .9994 5.731e-4
26 .9997 2.502e-4
27 .9998 1.07 5e-4

TABLE 7. Factor size re-estimation after failure

D New D D New D

4 4.575 23 24.012
5 5.604 24 25.031
6 6.606 25 26.075
7 7.632 26 27.085
8 8.654 27 28.108
9 9.685 28 29.135
10 10.712 29 30.138
11 11.725 30 31.145
12 12.760 31 32.152
13 13.789 32 23.173
14 14.818 33 34.157
15 15.847 34 35.213
16 16.869 35 36.223
17 17.884 36 37.242
18 18.896 37 38.262
19 19.932 38 39.315
20 20.950 39 40.287
21 21.964 40 41.302
22 22.992

458 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

6. ACTUAL ECM RUN TIMES

This section presents the actual running times of Montgomery's program on
a SUN-3/60. On such a machine, step 2 of his program runs approximately 175
times as fast as step 1. That is to say, in an amount of time it takes to execute
step 1 to B1, step 2 can be executed to 1 75B1 . Table 8 presents the amount of
time it takes to execute Montgomery's program to various step- I limits for three
different-sized N, 50 digits, 100 digits, and 200 digits. Theoretically, it should
take time proportional to B1 to execute step 1 up to B1, but Montgomery's
program has some internal tricks that make it faster than linear for small B1 .

TABLE 8. Actual ECM run times in seconds (step 1)

B1 50D lOOD 200D

100 3 11 44
500 7 29 115
1000 12 46 184
5000 43 172 690
10000 81 323 1293
50000 247 989 3955
100000 439 1754 7027
200000 810 3241 12960
500000 1835 7338 29353

From the times given in Table 8, we can use the parameters given by Table 3
to estimate how long it will take to find a factor of a given size with probability
1 - 1/e, for several different-sized N. The data is given in Table 9. Times
for other values of N can be interpolated by noting that the multiplication
algorithm used is an O(log2 N) algorithm, and that multiplying the size of N
by k changes the run time by a factor of k2. Times for other p can be
extrapolated by using the Inc column from Table 3.

TABLE 9. Probable time to find p (in seconds)

log10 p 100-Digit AN 200-Digit N

4 4.8 19.1
6 31.8 127
8 168 672
10 503 2012
12 1521 6084
14 4650 18600
16 14500 58000
18 45000 180000
20 110000 440000
22 270000 1.08e+6
24 645000 2.58e+6
26 1.60e+6 6.40e+6
28 4.1Oe+6 1.64e+7
30 1.04e+7 4.16e+7

THE ELLIPTIC CURVE FACTORING ALGORITHM 459

7. COMPARISON WITH THE QUADRATIC SIEVE

ECM is a random algorithm, while MPQS [11] works like a deterministic
algorithm in practice. ECM succeeds more quickly when N has a small prime
factor, but since the factors are unknown, one would like to place an upper
bound on the amount of time to spend using ECM, before switching to MPQS.
We would also like to determine how long to run ECM in order to minimize
the expected time to find a factor of N, using a combination of both meth-
ods. Throughout this section, we shall assume that trial division to log N has
already been performed.

Let v(T, p) be the probability that we succeed in factoring N with ECM
in time T, where p is the smallest prime factor of N. We note that T will
depend on p. Given that we spend time T with ECM and that MPQS will
take time x, the expected total time is

(7.1) R(T, p, x)=v(T, p)T + (1-v(T, p))(T + x).

Since we can always factor N in time x with MPQS by itself, we want
R(T, p, x) < x for all T. This yields an upper bound on the amount of
time to spend with ECM:

(7.2) T < v(T, p)x.

If we take x = L(N), v(T, p) = 1 -e- , and T = g (p)M(N) , inequality
(7.2) then becomes

(7.3) g L(N)
I -e- < J'I(p)M(N)

We have good estimates for the values of the o(1) term for L(N) based upon
the CPU-times presented in [3] and can therefore compute L(N) and X(p)
accurately. Alternatively, one can use values for L(N) and 5(p) taken from
actual known run times. One can therefore solve (7.3) for g numerically if one
assumes some value for p. The difficulty is that p is unknown. One should
therefore solve (7.3) for many different values of p and then average over the
different values of g, weighted by the probability that N has a factor near p .
This analysis is, of course, predicated on N having only two prime factors.
When it has more, the analysis becomes a great deal more complicated. The
MPQS algorithm will work in the same amount of time regardless of how many
factors are present. However, whenever ECM finds a factor, one presumably
divides out that factor before continuing. This in turn affects M(N) for the
next trial and makes the analysis a great deal more difficult. One must also
estimate the probability that the cofactor is prime.

We would also like to minimize the expected run time. A straightforward
minimization of (7.1) with respect to g yields

(7.4) g = { log Lif(p)M(N)) if L(N) > X(p)M(N),
0 otherwise.

460 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

In computing g, the values for J(p)M(N) can be taken from Table 9. Table
9 displays the actual timing estimates in the case where g = 1, that is, the
probability of success is 1 - 1 /e.

Given an arbitrary N, ECM works best by selecting B1 and B2 small,
running trials, then increasing B1 and B2 and repeating if there is no success.
We estimate here the time to run ECM before switching to MPQS, to minimize
(7.1), assuming that N will be small enough to factor with MPQS:

(1) Trial divide to p log2 N .
(2) Select logp = E(S(Nlp > log2 N)) from Table 5.
(3) For that value of p compute g from (7.4). If g = 0, then quit. Select

B1 and B2 from Table 3 and run ECM for time gX%(p)M(N).
(4) If ECM fails, increase p and go to step (3).
(5) If ECM succeeds and the cofactor is composite, re-estimate S(N) and

go to step (3).
(6) The total time spent is the sum of the times spent in (3).

Remark. This procedure is different from one we would use if we were employ-
ing only ECM. In the case described above, g is varied according to (7.4). If
we were using ECM only, we would always take g = 1, since that is optimal.

We only execute step (3) whenever earlier attempts have failed. The total
expected time spent in step (3) is therefore

Z g%(p)M(N)[probability that earlier trials failed].
p

This sum runs over increasing p until g is negative. At that point it becomes
faster to use MPQS. We note that even though B1 and B2 are chosen for a
particular p, there is also a smaller chance that it will find a larger p, and a
larger chance that it will find a smaller p. The probability that ECM succeeds
on a given trial is approximately

Z-Jpt (d),
d

where 1 /d is the probability that there is a (d + 1)-digit factor, and i/(d) is the
probability that ECM finds a factor of d digits with the value of g given by
(7.4). This latter probability can be found by direct integration of Dickman's
function as discussed in ??2 and 4. The probability of failure of a given trial is
trivially just one minus the above sum.

Remark. This analysis has assumed that our goal is simply to find a factor of
N, not to factor N completely. The latter case is extremely difficult to analyze
because when ECM does find a factor one must estimate the probability that
the cofactor is prime. This is difficult to estimate because the cofactor being
considered is, in some sense, no longer a "random" integer. It does not have the
same expected smoothness properties of some other arbitrary integer of about
the same size.

Table 10 presents the amount of time one should run ECM before switching
to MPQS. The values give the fraction of time one should spend with ECM,
relative to the time it will actually take with MPQS. This table assumes that one
is factoring a "random" integer whose factors up to log2 N have been removed

THE ELLIPTIC CURVE FACTORING ALGORITHM 461

TABLE 10. Time to run ECM before changing to MPQS

log,O N ECNI Time

40 .72
50 .43
60 .16
70 .05
80 .0080
90 .0029
100 .0016
110 .00071

by trial division and that one switches to QS upon finding the first factor. The
values given in Table 10 are approximate, and are rather sensitive to the starting
value for E(S(N)). If one assumes that the smallest factor of N is larger than
(say) N02, then one clearly would spend more time with ECM before switching.
The exact, optimal length of time can be computed by the procedure given by
(1)-(6) above. We also remark that the values given are sensitive to the quality
of implementation of the two methods.

ACKNOWLEDGMENTS

The authors would like to thank Claudia Spiro for helpful remarks regarding
the estimates in ?3 and Peter Montgomery for allowing us to use his ECM
program.

BIBLIOGRAPHY

1. Richard P. Brent, Some integer factorization algorithms using elliptic curves, Research Re-
port CMA-R32-85, The Centre for Mathematical Analysis, The Australian National Uni-
versity, 1985.

2. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factor-
izations of bn ? 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, 2nd ed., Contemp.
Math., vol. 22, Amer. Math. Soc., Providence, RI, 1983.

3. Tom R. Caron and Robert D. Silverman, Parallel implementation of the quadratic sieve, J.
Supercomputing 1 (1988), 273-290.

4. N. G. DeBruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Indag.
Math. 12 (1950), 247-256.

5. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., Oxford
Univ. Press, Oxford, 1979.

6. Donald E. Knuth and Luis Trabb Pardo, Analysis of a simple factorization algorithm, Theor.
Comp. Sci. 3 (1976), 321-348.

7. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. (2) 126 (1987),
649-673.

8. Peter L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization, Math.
Comp. 48 (1987), 243-264.

462 R. D. SILVERMAN AND S. S. WAGSTAFF, JR.

9. Carl Pomerance, Analysis and comparison of some integer factoring algorithms, Math. Cen-
trum Tracts (H. W. Lenstra, Jr. and R. Tijdeman, eds.), 1984, pp. 89-140.

10. Howard Raiffa and Robert Schlaifer, Applied statistical decision theory, MIT Press, Cam-
bridge, MA, 1961.

11. Robert D. Silverman, The multiple polynomial quadratic sieve, Math. Comp. 48 (1987),
329-340.

THE MITRE CORPORATION, BURLINGTON ROAD, BEDFORD, MASSACHUSETTS 01730
E-mail address: bs@linus.mitre.org

DEPARTMENT OF COMPUTER SCIENCES, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907
E-mail address: ssw@cs.purdue.edu

	Cit r646_c661:

